
Starkiller: A Static Type Inferencer
and Compiler for Python

Michael Salib
msalib@alum.mit.edu

Dynamic Languages Group
Computer Science & Artificial Intelligance Lab

Massachusetts Institute of Technology

May 11, 2004

This talk in 60 seconds

I.Motivation
II.Why Python is slow
III.Starkiller type inference
IV.Starkiller compilation
V.Results and Challenges
VI.Questions

I. Motivation

Reason 38 for destroying the sun:

The sun reduces our dependance on foreign
oil. It is unpatriotic.

The end of the world

 Software sucks. A lot.
 too buggy, too dangerous
 too expensive and slow to build
 too pervasive
 internet makes it all worse
 bad software kills people
 it is going to get worse before it gets better

Saving the world: Python

 Use a High level language
 fewer lines of code needed
 fewer lines mean

 fewer bugs
 less time/money to build

 make the worst brain damage impossible
 no buffer overflows in Python programs

 But Python cannot take over the world
 no continuations
 no macro system out of the box
 too slow

Python is slow

 I've done everything with Python
 High speed network servers
 Databases
 Statistical natural language processing
 Scientific computing
 Signal and Image processing
 AI type job schedulers

 And its been slow

Python is not slow!

 You're a heretic!
 Most apps spend all their time waiting

 on a socket (network servers)
 on a slow human (GUIs)
 on Oracle (databases)
 on disk IO (most things)

 Fast libraries written in C/C++
 Numeric!
 Die infidel, die!

Yes, Python is slow

 I've used all those lines myself
 I even believe them
 They're relevant most of the time
 But they don't change the fact that Python

is slow
 Sometimes, straightforward Python code is

much clearer and easier to write than fight-
ing with Numeric

 For the 15% of apps where speed matters,
pure Python can't do the job alone

 I don't want to use crappy C/C++

II. Why Python is slow

Reason 347 for destroying the sun:

It warms our enemies.

Those who do not learn from
history...

 p2c was a python to C compiler emerged
circa 1998

 It generated (lots of) C code that made the
same calls into the Python runtime that the
VM would

 But it compiled down to machine code!
 So it must be super fast!
 Super = 10-15%
 A lesson: the VM is not a performance bot-

tleneck (yet)

Where should I jump now?

 Quick! Inline the function f in the code be-
low!

 A lesson: dynamic binding seemed like
such a good idea at the time...

if random() > 0.5:
def f(x): return x + 1

else:
def f(x): return x – 1

print map(f, range(4096))

Trapped in a box

 Numbers are heap allocated objects refer-
enced by pointer; they are neither special
nor unique snowflakes

 New coercion rules make life even worse:
integer overflow silently coerces to longs

 A lesson: boxing replaces fast register ALU
ops with multiple dereferences of distant
(read: not in cache) memory

Our old (performance killing)
friend...

 Dynamic dispatch has a long history of ruin-
ing performance in OOP languages

 cf virtual/nonvirtual methods in C++, sealing
in Dylan

 By postponing until runtime decisions about
which bit of code is executed at a polymor-
phic call site, we lose the ability to optimize
well

 You cannot inline code when you don't
know what it is

More Pythonic “fun”

 Multiple inheritance
 First class functions with lexical scoping
 No declarations or manifest types
 getattr and setattr functions allow anyone to

get/set any attribute at runtime
 Dynamic inheritance relations
 Dynamic class membership

x = table()
x.__class__ = chair
assert isinstance(x, chair)

Other languages suck

 Java sucks beyond all measure and com-
prehension

 C++ and Java suffer the same performace
problems as Python when it comes to dy-
namic dispatch

 Dynamic dispatch prevents the compiler
from using all the cool optimizations like in-
lining

 Inlining is the canary in the coal mine: if you
can't inline, you probably can't do loop
hoisting, strength reduction, etc.

III. Starkiller type inference

Reason 7 for destroying the sun:

The sun causes global warming.

Making Python fast

 Speed == laziness: stop doing work
 Work refers to all the runtime choice points

the Python VM has to perform
 whenever the VM has to find what code to exe-

cute next
 whenever the VM has to check operands to en-

sure they are of the correct type
 We can eliminate many of those checks us-

ing static analysis, specifically type infer-
ence

Finding the right pigeon hole

 Compiling to C++ is not enough (cf p2c)
 Need static type inference to eliminate dy-

namic binding and dispatch
 Starkiller compliments rather than replaces

CPython
 Covers the entire language except eval,

exec, and dynamic module loading
 Not all run time choice points can be elim-

inted, but many can

Starkiller type inference

 Based on Ole Agesen's Cartesian Product
Algorithm (see his Stanford thesis)

 Represent Python programs as dataflow
networks

 Node correspond to expressions and have
a set of concrete types those expressions
can achieve at runtime

 Constraints connect nodes together and en-
force a subset relation between them

 Types flow along constraints

Ex-girlfriends say I'm insensitive

 Starkiller's type inference algorithm is flow-
insensitive

 It has no notion of time
 Code like x = 3; doSomething(x); x = 4.3;

doSomething(x) will suffer loss of precision
 I don't care. I'm insensitive, remember?

Type inference in action

 A simple example

x = 3
y = x
z = y
z = 4.3

Functions and Templates

 Parametric polymorphism (same function
with different argument types) reduces pre-
cision

 We regain precision by taking cartesian
product of argument type list and analyzing
one template for each monomorphic argu-
ment list

 Given polymorhic calls max(1, 2) and max
(3.3, 4.9), we analyze templates for (int,
int), (float, int), (int, float), and (float, float)

Functions and Definitions

 A Python function defintion creates a first
class object at runtime

 Function objects can capture variables de-
fined in their lexical parent(s)

 Starkiller models function definition using a
function definition node that has constraints
from all default args and expressions the
function closes over

 The definition node takes the cartesian
product and generates monomorphic func-
tion types

Objects and Classes

 Class definition works just like function def-
inition!

 Instances work in the same way as classes!
 Calling a class triggers the creation of an

instance definition node
 ID nodes are the repository for the poly-

morphic state of an instance
 They generate monomorphic instance state

types and send them into the world

Foreign Code

 Type inference cannot see into an exten-
sion module

 We could perform type inference on
C/C++/Fortran...therein lies doom

 Starkiller gives extension writers a minilan-
guage for declaring the type inference
properties of their extensions

 Most extensions are real simple: int(x) al-
ways returns an integer

Foreigner code, living among us,
plotting against us!

 Some extensions are unspeakably compli-
cated

 they might call arbitrary functions
 they might mutate their arguments or some ob -

ject that is part of global state
 The external type description language is

really Python
 External type descriptions run as extensions of

the Starkiller type inferencer
 You can use them to raise the dead

IV. Starkiller compilation

Reason 204 for destroying the sun:

DARPA say sun bad. Must kill or lose funding.

Compilation preliminaries

 Functions/classes/modules are represented
by C++ objects that can be passed around

 Each function/method template gets com-
piled as a separate monomorphic block of
code

 Since modules are executed exactly once,
their attributes are all static

 Conservative GC thanks to Boehm
 No relation between Python and C++ object

models

Data model

 Numbers are automatically unboxed
 Everything else is heap allocated and

passed by reference
 Container datatypes are built out of STL

componants and are type specific

Closures

 Normally, variables are stack allocated
 But, for variables referenced by inner func-

tions, Starkiller allocates them specially
from a heap allocated MiniStackFrame

 An MST is common space that the original
function and all of its inner functions can
safely refer to, even after the original func-
tion returns

 The MST persists as long as it remains ref-
erenced thanks to the magic of GC

Fast Polymorphic dispatch

 We cannot eliminate all of it
 Usually implemented with an indirect

branch through a class pointer
 very, very slow on modern hardware

 For the common case where there are few
possibilites, we exploit the lack of eval to
speed things up

 Use gcc's computed-goto extension plus
minimal hashing to jump directly into the
code without a branch

Dynamic attributes

 getattr is easy to optimize:
 use perfect hashing (plus extra if setattr)

 setattr contaminates objects
 any attribute can be of the type assigned in the

setattr call

Exceptions

 All Starkiller defined functions/methods can
throw InternalRuntimeError

 A Python try/except block is translated into
a C++ try/catch block that dispatches on
the exception thrown

 Python library code based on C++ compo-
nants translate native C++ exceptions into
their Python equivalent

Generators

 Generators become functions that return
instances of a generator object

 Variables in the generator body become at-
tributes of the object

 yield statements get replaced by code that
saves the label corresponding to the next
statement to be executed and then returns

 On each invocation of the generator object,
control jumps to the label last saved

V. Results and Challenges

Reason 172 for destroying the sun:

The pale yellow face mocks us, keeps us from
hearing the machine; it burns, it burns, we
hatesss it!

Where are we now?

 Starkiller type inferencer is mostly imple-
mented

 almost all of the hard parts are done
 most of the unfinished work is boring detail

 The compiler is in the very early stages
 a prototype works on simple code that doesn't

push it too hard
 no runtime system, no builtin types except int

and float

Suckling on the government teat

 Who owns Starkiller? MIT!
 Who paid for Starkiller's development?
 You did! Pat yourselves on the back!
 Thank you taxpayers
 “So, that means that you are a whore, MIT

is your pimp, and DARPA is the john who
likes to play rough. . .Hey Mike, is there
anything you won't do for money?”

 A secret: don't tell DARPA I'm not building
the sun destroying weapon they think I am

Justify your existance

 Very preliminary benchmark with the proto-
type compiler and type inferencer

 All benchmarks are lies
 This one is pathological
 Call the factorial and fibonacci functions
 In a loop. Over and Over.
 CPython completion time: 18:37
 Starkiller completion time: 0:15
 Speedup: 60

Challenges

 Static error detection
 Template shadowing
 False numeric polymorphism
 Partial evaluation
 Overflow coercion
 Restoring eval functionality

VI. Questions?

 Because it seemed like a good idea at the
time...

