Starkiller: A Static Type Inferencer
and Compiler for Python

Michael Salib
msalib@alum.mit.edu

Dynamic Languages Group
Computer Science & Artificial Intelligance Lab
Massachusetts Institute of Technology

May 11, 2004



This talk in 60 seconds

|.Motivation

I.Why Python is slow
lll.Starkiller type inference
IVV.Starkiller compilation
V.Results and Challenges
VI.Questions



I. Motivation

Reason 38 for destroying the sun:

The sun reduces our dependance on foreign
oil. It is unpatriotic.



The end of the world

¢ Software sucks. A lot.
¢ too buggy, too dangerous
¢ too expensive and slow to build
¢ too pervasive
¢ internet makes it all worse
¢ bad software kills people
¢ it is going to get worse before it gets better



Saving the world: Python

¢ Use a High level language
¢ fewer lines of code needed

¢ fewer lines mean
¢ fewer bugs
¢ |ess time/money to build

¢ make the worst brain damage impossible
¢ no buffer overflows in Python programs
¢ But Python cannot take over the world
¢ no continuations
¢ no macro system out of the box
¢ {oo slow



Python is slow

¢ |'ve done everything with Python
¢ High speed network servers
¢ Databases
¢ Statistical natural language processing
¢ Scientific computing
¢ Signal and Image processing
¢ Al type job schedulers

¢ And its been slow



Python is not slow!

¢ You're a heretic!

¢ Most apps spend all their time waiting
¢ on a socket (network servers)
¢ on a slow human (GUIs)
¢ on Oracle (databases)
¢ on disk IO (most things)

¢ Fast libraries written in C/C++
¢ Numeric!
¢ Die infidel, die!



Yes, Python is slow

¢ |'ve used all those lines myself

¢ | even believe them

¢ They're relevant most of the time

¢ But they don't change the fact that Python
IS slow

¢ Sometimes, straightforward Python code is
much clearer and easier to write than fight-
ing with Numeric

¢ For the 15% of apps where speed matters,
pure Python can't do the job alone

¢ | don't want to use crappy C/C++



Il. Why Python is slow

Reason 347 for destroying the sun:

It warms our enemies.



Those who do not learn from
history...

¢ p2c was a python to C compiler emerged
circa 1998

¢ |t generated (lots of) C code that made the
same calls into the Python runtime that the
VM would

¢ But it compiled down to machine code!

¢ So it must be super fast!

¢ Super = 10-15%

¢ A lesson: the VM is not a performance bot-
tleneck (yet)



Where should | jump now?

¢ Quick! Inline the function f in the code be-
low!

¢ A lesson: dynamic binding seemed like
such a good idea at the time...

1f random() > 0.5:

def f(x): return x + 1
else:
def f(x): return x — 1

print map (£, range (4096))



Trapped in a box

¢ Numbers are heap allocated objects refer-
enced by pointer; they are neither special
nor unique snowflakes

¢ New coercion rules make life even worse:
integer overflow silently coerces to longs

¢ A lesson: boxing replaces fast register ALU
ops with multiple dereferences of distant
(read: not in cache) memory



Our old (performance killing)
friend...

¢ Dynamic dispatch has a long history of ruin-
ing performance in OOP languages

¢ cf virtual/nonvirtual methods in C++, sealing
in Dylan

¢ By postponing until runtime decisions about
which bit of code is executed at a polymor-
phic call site, we lose the ability to optimize
well

¢ You cannot inline code when you don't
know what it is



More Pythonic “fun”

¢ Multiple inheritance

¢ First class functions with lexical scoping

¢ No declarations or manifest types

¢ getattr and setattr functions allow anyone to
get/set any attribute at runtime

¢ Dynamic inheritance relations

¢ Dynamic class membership
X = table()
X. class = chair
assert isinstance(x, chair)



Other languages suck

¢ Java sucks beyond all measure and com-
prehension

¢ C++ and Java suffer the same performace
problems as Python when it comes to dy-
namic dispatch

¢ Dynamic dispatch prevents the compiler
from using all the cool optimizations like in-
lining

¢ Inlining is the canary in the coal mine: if you
can't inline, you probably can't do loop
hoisting, strength reduction, etc.



lll. Starkiller type inference

Reason 7 for destroying the sun:

The sun causes global warming.



Making Python fast

¢ Speed == laziness: stop doing work
¢ Work refers to all the runtime choice points

the Python VM has to perform

¢ whenever the VM has to find what code to exe-
cute next

¢ whenever the VM has to check operands to en-
sure they are of the correct type

¢ \We can eliminate many of those checks us-
ing static analysis, specifically type infer-
ence



Finding the right pigeon hole

¢ Compiling to C++ is not enough (cf p2c)

¢ Need static type inference to eliminate dy-
namic binding and dispatch

¢ Starkiller compliments rather than replaces
CPython

¢ Covers the entire language except eval,
exec, and dynamic module loading

¢ Not all run time choice points can be elim-
inted, but many can



Starkiller type inference

¢ Based on Ole Agesen's Cartesian Product
Algorithm (see his Stanford thesis)

¢ Represent Python programs as dataflow
networks

¢ Node correspond to expressions and have
a set of concrete types those expressions
can achieve at runtime

¢ Constraints connect nodes together and en-
force a subset relation between them

¢ Types flow along constraints



Ex-girlfriends say I'm insensitive

¢ Starkiller's type inference algorithm is flow-
Insensitive

¢ |t has no notion of time

¢ Code like x = 3; doSomething(x); x = 4.3;
doSomething(x) will suffer loss of precision

¢ | don't care. I'm insensitive, remember?



Type inference in action

Constant:
ot}

¢ A simple example

N N < X
[T
A< X W
w

Constant:d. 3
1loat |

z
lint, float|



Functions and Templates

¢ Parametric polymorphism (same function
with different argument types) reduces pre-
cision

¢ \We regain precision by taking cartesian
product of argument type list and analyzing
one template for each monomorphic argu-
ment list

¢ Given polymorhic calls max(1, 2) and max
(3.3, 4.9), we analyze templates for (int,
int), (float, int), (int, float), and (float, float)



Functions and Definitions

¢ A Python function defintion creates a first
class object at runtime

¢ Function objects can capture variables de-
fined in their lexical parent(s)

¢ Starkiller models function definition using a
function definition node that has constraints
from all default args and expressions the
function closes over

¢ The definition node takes the cartesian
product and generates monomorphic func-
tion types



Objects and Classes

¢ Class definition works just like function def-
inition!

¢ |nstances work in the same way as classes!

¢ Calling a class triggers the creation of an
instance definition node

¢ |D nodes are the repository for the poly-
morphic state of an instance

¢ They generate monomorphic instance state
types and send them into the world



Foreign Code

¢ Type inference cannot see into an exten-
sion module

¢ \We could perform type inference on
C/C++/Fortran...therein lies doom

¢ Starkiller gives extension writers a minilan-
guage for declaring the type inference
properties of their extensions

¢ Most extensions are real simple: int(x) al-
ways returns an integer



Foreigner code, living among us,
plotting against us!

¢ Some extensions are unspeakably compli-

cated
¢ they might call arbitrary functions
¢ they might mutate their arguments or some ob -
ject that is part of global state

¢ The external type description language is
really Python
¢ External type descriptions run as extensions of

the Starkiller type inferencer
€ You can use them to raise the dead



IV. Starkiller compilation

Reason 204 for destroying the sun:

DARPA say sun bad. Must kill or lose funding.



Compilation preliminaries

¢ Functions/classes/modules are represented
by C++ objects that can be passed around

¢ Each function/method template gets com-
piled as a separate monomorphic block of
code

¢ Since modules are executed exactly once,
their attributes are all static

¢ Conservative GC thanks to Boehm

¢ No relation between Python and C++ object
models



Data model

¢ Numbers are automatically unboxed

¢ Everything else is heap allocated and
passed by reference

¢ Container datatypes are built out of STL
componants and are type specific



Closures

¢ Normally, variables are stack allocated

¢ But, for variables referenced by inner func-
tions, Starkiller allocates them specially
from a heap allocated MiniStackFrame

¢ An MST is common space that the original
function and all of its inner functions can
safely refer to, even after the original func-
tion returns

¢ The MST persists as long as it remains ref-
erenced thanks to the magic of GC



Fast Polymorphic dispatch

¢ \We cannot eliminate all of it
¢ Usually implemented with an indirect

branch through a class pointer
¢ very, very slow on modern hardware

¢ For the common case where there are few
possibilites, we exploit the lack of eval to
speed things up

¢ Use gcc's computed-goto extension plus
minimal hashing to jump directly into the
code without a branch



Dynamic attributes

¢ getattr is easy to optimize:
¢ use perfect hashing (plus extra if setattr)
¢ setattr contaminates objects

¢ any attribute can be of the type assigned in the
setattr call



Exceptions

¢ All Starkiller defined functions/methods can
throw InternalRuntimeError

¢ A Python try/except block is translated into
a C++ try/catch block that dispatches on
the exception thrown

¢ Python library code based on C++ compo-
nants translate native C++ exceptions into
their Python equivalent



Generators

¢ Generators become functions that return
iInstances of a generator object

¢ Variables in the generator body become at-
tributes of the object

¢ yield statements get replaced by code that
saves the label corresponding to the next
statement to be executed and then returns

¢ On each invocation of the generator object,
control jJumps to the label last saved



V. Results and Challenges

Reason 172 for destroying the sun:

The pale yellow face mocks us, keeps us from
hearing the machine; it burns, it burns, we
hatesss it!



Where are we now?

¢ Starkiller type inferencer is mostly imple-

mented
¢ almost all of the hard parts are done
¢ most of the unfinished work is boring detail

¢ The compiler is in the very early stages
¢ a prototype works on simple code that doesn't
push it too hard
¢ no runtime system, no builtin types except int
and float



Suckling on the government teat

¢ \Who owns Starkiller? MIT!

¢ \Who paid for Starkiller's development?

¢ You did! Pat yourselves on the back!

¢ Thank you taxpayers

¢ "So, that means that you are a whore, MIT
is your pimp, and DARPA is the john who
likes to play rough. . .Hey Mike, is there
anything you won't do for money?”

¢ A secret: don't tell DARPA I'm not building
the sun destroying weapon they think | am



Justify your existance

¢ Very preliminary benchmark with the proto-
type compiler and type inferencer

¢ All benchmarks are lies

¢ This one is pathological

¢ Call the factorial and fibonacci functions

¢ |In a loop. Over and Over.

¢ CPython completion time: 18:37

¢ Starkiller completion time: 0:15

¢ Speedup: 60



Challenges

¢ Static error detection

¢ Template shadowing

¢ False numeric polymorphism
¢ Partial evaluation

¢ Overflow coercion

¢ Restoring eval functionality



VI. Questions?

¢ Because it seemed like a good idea at the
time...



