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I. Motivation

Reason 38 for destroying the sun:

The sun reduces our dependance on foreign 
oil. It is unpatriotic.



The end of the world

 Software sucks. A lot.
 too buggy, too dangerous
 too expensive and slow to build
 too pervasive
 internet makes it all worse
 bad software kills people   
 it is going to get worse before it gets better



Saving the world: Python

 Use a High level language
 fewer lines of code needed
 fewer lines mean

 fewer bugs
 less time/money to build

 make the worst brain damage impossible
 no buffer overflows in Python programs 

 But Python cannot take over the world
 no continuations
 no macro system out of the box
 too slow



Python is slow

 I've done everything with Python
 High speed network servers
 Databases
 Statistical natural language processing
 Scientific computing
 Signal and Image processing
 AI type job schedulers

 And its been slow



Python is not slow!

 You're a heretic!
 Most apps spend all their time waiting

 on a socket (network servers)
 on a slow human (GUIs)
 on Oracle (databases)
 on disk IO (most things)

 Fast libraries written in C/C++
 Numeric!
 Die infidel, die!



Yes, Python is slow

 I've used all those lines myself
 I even believe them
 They're relevant most of the time
 But they don't change the fact that Python 

is slow
 Sometimes, straightforward Python code is 

much clearer and easier to write than fight-
ing with Numeric

 For the 15% of apps where speed matters, 
pure Python can't do the job alone

 I don't want to use crappy C/C++



II. Why Python is slow

Reason 347 for destroying the sun:

It warms our enemies.



Those who do not learn from 
history...

 p2c was a python to C compiler emerged 
circa 1998

 It generated (lots of) C code that made the 
same calls into the Python runtime that the 
VM would

 But it compiled down to machine code!
 So it must be super fast!
 Super = 10-15%
 A lesson: the VM is not a performance bot-

tleneck (yet)



Where should I jump now?

 Quick! Inline the function f in the code be-
low!

 A lesson: dynamic binding seemed like 
such a good idea at the time...

if random() > 0.5:
def f(x): return x + 1

else:
def f(x): return x – 1

print map(f, range(4096))



Trapped in a box

 Numbers are heap allocated objects refer-
enced by pointer; they are neither special 
nor unique snowflakes

 New coercion rules make life even worse: 
integer overflow silently coerces to longs

 A lesson: boxing replaces fast register ALU 
ops with multiple dereferences of distant 
(read: not in cache) memory



Our old (performance killing) 
friend...

 Dynamic dispatch has a long history of ruin-
ing performance in OOP languages

 cf virtual/nonvirtual methods in C++, sealing 
in Dylan

 By postponing until runtime decisions about 
which bit of code is executed at a polymor-
phic call site, we lose the ability to optimize 
well

 You cannot inline code when you don't 
know what it is



More Pythonic “fun”

 Multiple inheritance
 First class functions with lexical scoping
 No declarations or manifest types
 getattr and setattr functions allow anyone to 

get/set any attribute at runtime
 Dynamic inheritance relations
 Dynamic class membership

x = table()
x.__class__ = chair
assert isinstance(x, chair)



Other languages suck

 Java sucks beyond all measure and com-
prehension

 C++ and Java suffer the same performace 
problems as Python when it comes to dy-
namic dispatch

 Dynamic dispatch prevents the compiler 
from using all the cool optimizations like in-
lining

 Inlining is the canary in the coal mine: if you 
can't inline, you probably can't do loop 
hoisting, strength reduction, etc.



III. Starkiller type inference

Reason 7 for destroying the sun:

The sun causes global warming.



Making Python fast

 Speed == laziness: stop doing work
 Work refers to all the runtime choice points 

the Python VM has to perform
 whenever the VM has to find what code to exe-

cute next
 whenever the VM has to check operands to en-

sure they are of the correct type
 We can eliminate many of those checks us-

ing static analysis, specifically type infer-
ence



Finding the right pigeon hole

 Compiling to C++ is not enough (cf p2c)
 Need static type inference to eliminate dy-

namic binding and dispatch
 Starkiller compliments rather than replaces 

CPython
 Covers the entire language except eval, 

exec, and dynamic module loading
 Not all run time choice points can be elim-

inted, but many can



Starkiller type inference

 Based on Ole Agesen's Cartesian Product 
Algorithm (see his Stanford thesis)

 Represent Python programs as dataflow 
networks

 Node correspond to expressions and have 
a set of concrete types those expressions 
can achieve at runtime

 Constraints connect nodes together and en-
force a subset relation between them

 Types flow along constraints



Ex-girlfriends say I'm insensitive

 Starkiller's type inference algorithm is flow-
insensitive

 It has no notion of time
 Code like x = 3; doSomething(x); x = 4.3; 

doSomething(x) will suffer loss of precision
 I don't care. I'm insensitive, remember?



Type inference in action

 A simple example

x = 3
y = x
z = y
z = 4.3



Functions and Templates

 Parametric polymorphism (same function 
with different argument types) reduces pre-
cision

 We regain precision by taking cartesian 
product of argument type list and analyzing 
one template for each monomorphic argu-
ment list

 Given polymorhic calls max(1, 2) and max
(3.3, 4.9), we analyze templates for (int, 
int), (float, int), (int, float), and (float, float)



Functions and Definitions

 A Python function defintion creates a first 
class object at runtime

 Function objects can capture variables de-
fined in their lexical parent(s)

 Starkiller models function definition using a 
function definition node that has constraints 
from all default args and expressions the 
function closes over

 The definition node takes the cartesian 
product and generates monomorphic func-
tion types



Objects and Classes

 Class definition works just like function def-
inition!

 Instances work in the same way as classes!
 Calling a class triggers the creation of an 

instance definition node
 ID nodes are the repository for the poly-

morphic state of an instance
 They generate monomorphic instance state 

types and send them into the world



Foreign Code

 Type inference cannot see into an exten-
sion module

 We could perform type inference on 
C/C++/Fortran...therein lies doom

 Starkiller gives extension writers a minilan-
guage for declaring the type inference 
properties of their extensions

 Most extensions are real simple: int(x) al-
ways returns an integer



Foreigner code, living among us, 
plotting against us!

 Some extensions are unspeakably compli-
cated

 they might call arbitrary functions
 they might mutate their arguments or some ob -

ject that is part of global state
 The external type description language is 

really Python
 External type descriptions run as extensions of 

the Starkiller type inferencer
 You can use them to raise the dead



IV. Starkiller compilation

Reason 204 for destroying the sun:

DARPA say sun bad. Must kill or lose funding.



Compilation preliminaries

 Functions/classes/modules are represented 
by C++ objects that can be passed around

 Each function/method template gets com-
piled as a separate monomorphic block of 
code

 Since modules are executed exactly once, 
their attributes are all static

 Conservative GC thanks to Boehm
 No relation between Python and C++ object 

models



Data model

 Numbers are automatically unboxed
 Everything else is heap allocated and 

passed by reference
 Container datatypes are built out of STL 

componants and are type specific



Closures

 Normally, variables are stack allocated
 But, for variables referenced by inner func-

tions, Starkiller allocates them specially 
from a heap allocated MiniStackFrame

 An MST is common space that the original 
function and all of its inner functions can 
safely refer to, even after the original func-
tion returns

 The MST persists as long as it remains ref-
erenced thanks to the magic of GC



Fast Polymorphic dispatch

 We cannot eliminate all of it
 Usually implemented with an indirect 

branch through a class pointer
 very, very slow on modern hardware

 For the common case where there are few 
possibilites, we exploit the lack of eval to 
speed things up

 Use gcc's computed-goto extension plus 
minimal hashing to jump directly into the 
code without a branch



Dynamic attributes

 getattr is easy to optimize:
 use perfect hashing (plus extra if setattr)

 setattr contaminates objects
 any attribute can be of the type assigned in the 

setattr call



Exceptions

 All Starkiller defined functions/methods can 
throw InternalRuntimeError

 A Python try/except block is translated into 
a C++ try/catch block that dispatches on 
the exception thrown

 Python library code based on C++ compo-
nants translate native C++ exceptions into 
their Python equivalent



Generators

 Generators become functions that return 
instances of a generator object

 Variables in the generator body become at-
tributes of the object

 yield statements get replaced by code that 
saves the label corresponding to the next 
statement to be executed and then returns

 On each invocation of the generator object, 
control jumps to the label last saved



V. Results and Challenges

Reason 172 for destroying the sun:

The pale yellow face mocks us, keeps us from 
hearing the machine; it burns, it burns, we 
hatesss it!



Where are we now?

 Starkiller type inferencer is mostly imple-
mented

 almost all of the hard parts are done
 most of the unfinished work is boring detail

 The compiler is in the very early stages
 a prototype works on simple code that doesn't 

push it too hard
 no runtime system, no builtin types except int 

and float



Suckling on the government teat

 Who owns Starkiller? MIT!
 Who paid for Starkiller's development?
 You did! Pat yourselves on the back!
 Thank you taxpayers
 “So, that means that you are a whore, MIT 

is your pimp, and DARPA is the john who 
likes to play rough. . .Hey Mike, is there 
anything you won't do for money?”

 A secret: don't tell DARPA I'm not building 
the sun destroying weapon they think I am



Justify your existance

 Very preliminary benchmark with the proto-
type compiler and type inferencer

 All benchmarks are lies
 This one is pathological
 Call the factorial and fibonacci functions
 In a loop. Over and Over.
 CPython completion time: 18:37
 Starkiller completion time: 0:15
 Speedup: 60



Challenges

 Static error detection
 Template shadowing
 False numeric polymorphism
 Partial evaluation
 Overflow coercion
 Restoring eval functionality



VI. Questions?

 Because it seemed like a good idea at the 
time...


